DOI: 10.1002/chem.201000074

Using a Threading-Followed-by-Swelling Approach to Synthesize [2]Rotaxanes

Jia-Ling Ko,^[a] Shau-Hua Ueng,^[a] Ching-Wei Chiu,^[a] Chien-Chen Lai,^[b] Yi-Hung Liu,^[a] Shie-Ming Peng,^[a] and Sheng-Hsien Chiu*^[a]

Abstract: We have developed a "threading-followed-by-swelling" protocol to synthesize [2]rotaxanes efficiently and atom economically. Our protocol employs cis-1-[(Z)-alk-1'-enyl]-2-vinylcyclopropane units as the termini of the threadlike components; these end groups are converted into more-sizable cycloheptadiene motifs, which function as stopper units,

through Cope rearrangements at elevated temperature. We used this approach to synthesize [2]rotaxanes in good yield from [2]pseudorotaxanes

Keywords: Cope rearrangement • NMR spectroscopy • rotaxanes • solvent-free synthesis • supramolecular chemistry featuring either one or two swellable termini to interlock three different types of macrocycle. The chiral centers created by the swelling process were "erased" by hydrogenating the cycloheptadiene termini into the corresponding cycloheptane units, affording achiral molecular [2]rotaxanes as the only final products.

Introduction

Because rotaxanes have potential applicability as molecular actuators and switches within mesoscale molecular electronic devices,^[1] there is interest in developing new methods and protocols for their synthesis. Although a diverse array of rotaxanes has been constructed using a range of molecular recognition systems,^[2] the protocols that have been applied to the syntheses of these interlocked molecules have been limited primarily to threading-followed-by-stoppering,^[3] slippage,^[4] and clipping^[5] methods (Figure 1). In the threading-followed-by-stoppering protocol, pseudorotaxanes are first generated in solution and then external stopper motifs are

- [a] J.-L. Ko, S.-H. Ueng, C.-W. Chiu, Y.-H. Liu, Prof. S.-M. Peng, Prof. S.-H. Chiu Department of Chemistry National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, (Taiwan, ROC) Fax: (+886)2-3366-1677 E-mail: shchiu@ntu.edu.tw
 [b] Prof. C.-C. Lai
- [6] Froi. C.-C. Lai Institute of Molecular Biology National Chung Hsing University and Department of Medical Genetics China Medical University Hospital Taichung, (Taiwan, ROC)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201000074.

attached to the end groups to interlock the macrocycles. The slippage protocol relies on thermal energy to facilitate the passage of the macrocycle over the high potential energy barrier of the stopper unit to form the corresponding thermodynamically stable rotaxanes at lower temperature. In the clipping approach, a recognition site on the dumbbellshaped component serves as a template to direct the formation of an encircling interlocked macrocycle. Synthetic approaches that do not fall within these three protocols are relatively rare. Notably, an elegant threading-followed-byring-shrinking approach^[6] was developed, in which Pd^{II} ions were added to chelate a salophen motif of the macrocyclic unit within a [2]pseudorotaxane, thereby decreasing the cavity size of the macrocycle to such an extent that it became interlocked with the dumbbell-shaped thread (Figure 1). Conceptually, interlocking the macrocycle along the rodlike unit of the dumbbell-shaped component could also be achieved by swelling the volume of the terminal groups of the pseudorotaxane. There are, however, several difficulties associated with designing a system to prove the viability of this new "threading-followed-by-swelling" concept:^[7] 1) the terminal group should be expanded without attaching any additional atoms or molecular motifs so that the "swelling" process can be separated conceptually from "stoppering", 2) to maintain sufficient binding affinity to the thread component, the size of the macrocycle should remain constant, but the size of the terminal group must be chosen carefully to ensure that the macrocycle can pass over it

Figure 1. Cartoon representations of the general protocols for rotaxane synthesis.

prior to swelling but not after, and 3) the swelling of the terminal group must be initiated under simple and controllable conditions. Herein, we demonstrate a threading-followedby-swelling protocol (Figure 1) for the synthesis of symmetrical and unsymmetrical molecular rotaxanes based on the recognition of dibenzylammonium ions (DBA⁺) by three size-appropriate macrocyclic hosts, using *cis*-1-[(*Z*)-alk-1'enyl]-2-vinylcyclopropane motifs as swellable terminal groups. We also report that this threading-followed-by-swelling protocol can be applied to the synthesis of these rotaxanes under solvent-free conditions.

Results and Discussion

Because of kinetic equilibrium between dumbbell-shaped and macrocyclic components and their pseudorotaxane complexes in solution, the efficiency of chemical reactions applied to interlock these components using a stoppering process is generally affected by the formation of interfering byproducts.^[8] Theoretically, the threading-followed-by-swelling approach is a clean and atom-economical^[9] protocol—with no by-product disturbance—because the enlargement of the

FULL PAPER

terminal group can be achieved by using an appropriate pericyclic reaction to rearrange its carbon atom skeleton. We chose the 1,2-divinylcyclopropane unit as the terminal group for the swelling thread because it can be converted into a bulkier cycloheptadiene motif through a Cope rearrangement. Because trans-1,2-divinylcyclopropane requires a high temperature—unfavorable for maintaining a complexed pseudorotaxane-to perform the desired Cope rearrangement reaction. cis-1,2-divinylcyclopropane, which rearranges very rapidly at room temperature, was our stopper unit of choice.^[10] To slow down the rapid Cope rearrangement of the cis-1,2-divinylcyclopropane terminus, we chose to link its olefinic bond to the thread component in a Z configuration; unfavorable A-1,3 interactions of cis-1-[(Z)-alk-1'-envl]-2-vinylcyclopropane units will disturb the alignment of the alkene orbitals and, thereby, significantly decrease the rate of rearrangement at room temperature.^[11] Therefore, we

aimed to synthesize and isolate the *cis*-1-[(Z)-alk-1'-enyl]-2vinylcyclopropane-terminated threadlike salt **1**-H·PF₆ at room temperature and then demonstrate the threading-followed-by-swelling concept by initiating the Cope rearrangement reaction of its corresponding pseudorotaxane in solution at elevated temperature.

The racemic threadlike salt 1-H-PF₆, featuring *p*-tert-butylphenyl and *cis*-1-[(Z)-alk-1'-enyl]-2-vinylcyclopropane units as terminal groups, was synthesized from cis-1,2-cyclopropanedimethanol^[12] (Scheme 1). Monoesterification of the diol 2 gave a racemic mixture of the alcohol 3, which was oxidized by using pyridinium chlorochromate (PCC) to provide the aldehyde 4. By using sodium hexamethyl disilazide (NaHMDS) as the base, the Wittig reaction of 4 with (3-cyanopropyl)triphenylphosphonium bromide (5) provided the desired Z isomer of the alkene 6 in high yield. The ester protecting group of 6 was removed under basic conditions to produced the alcohol 7. The nitrile function of 7 was reduced by LiAlH₄ to give the amino alcohol 8, which was used in the following reaction without purification. Reduction of the imine formed from the reaction of *p*-tert-butylbenzaldehyde and 8 was followed by the protection of the resulting amine by using 9-fluorenylmethoxycarbonyl chlo-

www.chemeurj.org

The spectra of an equimolar mixture of the macrocycle 12 and the threadlike salt $1-H-PF_6$ (initial concentrations: 10 mм) in CD₃NO₂ at 318 K revealed the gradual consumption of the signals of the dialkenylcyclopropane-terminated [2]pseudorotaxane $[12 \supset 1 - H][PF_6]$ and the concomitant rise in the intensities of the signals of the cycloheptadiene-terminated [2]rotaxane 14-H-PF₆ in terms of the changes in intensity of the signals of the two methylene groups adjacent to the ammonium center (Figure 3). Thus, heating an equimolar mixture of 12 and $1-H-PF_6$ in CH_3NO_2 (70 mм) at 318 K for 64 h, followed by ion exchange (NH₄PF₆/H₂O) and chromatographic processes, provided the [2]rotaxane 14-H-PF₆ in an isolated yield of 61%.

Scheme 1. Synthesis of the threadlike salt 1-H-PF₆. DMAP=4-dimethylaminopyridine, PCC=pyridinium chlorochromate, NaHMDS=sodium hexamethyl disilazide, Fmoc-Cl=9-fluorenylmethoxycarbonyl chloride.

ride (Fmoc-Cl) to afford the alcohol 9, which was then oxi- a) dized to give the aldehyde 10. The Wittig reaction of 10 with methyltriphenylphosphonium bromide not only set up the desired cis-1-[(Z)-alk-1'-enyl]-2-vinylcyclopropane endgroup, but also removed the protecting Fmoc group to give the amine 11, which was then protonated and subjected to ion exchange to give the threadlike salt 1-H-PF₆. The macrocycles 12,^[13] 13,^[14] and dibenzo[24]crown-8 (DB24C8)^[15] all form [2]pseudorotaxane-like complexes with $DBA \cdot PF_6$ in low-polarity solvents. Thus, these three macrocycles were selected for the syntheses of three [2]rotaxanes by using the threading-followed-by-swelling approach. An equimolar mixture of 12 and the threadlike salt 1-H·PF₆ (1 mM) in CD₃NO₂ underwent slow association/dissociation-on the ¹H NMR spectroscopic timescale—of the two species, as evi- c) denced by the presence of three sets of resonances in the ¹H NMR spectrum (Figure 2b): one set for the free macrocycle 12 (cf., Figure 2a), one for the free salt 1-H·PF₆ (cf., Figure 2c), and one for the 1:1 complex formed between 12 and 1-H·PF₆. The characteristic upfield shift of the signal for the methylene protons adjacent to the NH_2^+ center in the complex formed between 12 and the threadlike cation 1-H⁺ (see the Supporting Information) suggested that the structure of the complex was most likely to be the [2]pseudorotaxane $[12 \supset 1-H][PF_6]$. Because the *p-tert*-butylphenyl unit is an effective stopper for the macrocycle 12,^[13] the association and dissociation of the complex $[12 \supset 1-H][PF_6]$ must occur through passage of the cis-1-[(Z)-alk-1'-envl]-2-vinvlcyclopropane terminus of the threadlike component through the macrocycle.

Figure 2. Partial ¹H NMR spectra (400 MHz, CD_3NO_2 , 298 K) of a) macrocycle **12**, b) an equimolar mixture of **12** and **1**-H·PF₆ (1 mM), and c) **1**-H·PF₆. The descriptor (c) refers to the signals of the complexed states of macrocycle **12** and thread **1**-H·PF₆.

Single crystals suitable for X-ray crystallography were grown through the liquid diffusion of isopropyl ether into a solution of the [2]rotaxane **14-H·PF**₆ in MeCN. The solidstate structure^[16,17] (Figure 4) reveals the expected [2]ro-

6952

Figure 3. Partial ¹H NMR spectra (400 MHz, CD_3NO_2 , 318 K) displaying the formation of the [2]rotaxane **14**-H·PF₆ from the [2]pseudorotaxane [**12** \supset **1**-H][PF₆] after reaction times of a) 0, b) 12, c) 18, d) 36, e) 48, and f) 64 h.

Figure 4. Ball-and-stick representation of the solid-state structure of the [2]rotaxane 14^+ .

taxane molecular geometry; the dumbbell-shaped component, with its *p-tert*-butylphenyl and cycloheptadiene stopper units, is threaded through the cavity of the macrocyclic moiety.

Because the racemic *cis*-1-[(Z)-alk-1'-enyl]-2-vinylcyclopropane-terminated threadlike salt **1**-H•PF₆ was employed in the threading-followed-by-swelling process, the resulting [2]rotaxane **14**-H•PF₆ was obtained as a racemate. The two enantiomers were converted into the same achiral [2]rotaxane **15**-

FULL PAPER

H•PF₆ through the simple hydrogenation of the cycloheptadiene terminus into a cycloheptane moiety. This conversion was evidenced by the concomitant disappearance of the vinyl and allylic signals in the ¹H NMR spectra of the racemic [2]rotaxane **14**-H•PF₆ and the appearance of new signals for aliphatic protons (δ = 1.0–1.5 ppm) in the ¹H NMR spectra of the [2]rotaxane **15**-H•PF₆ after hydrogenation (Figure 5). It was therefore not necessary to synthesize an optically pure threadlike salt because the final hydrogenation step erases the chirality from the [2]rotaxane. No signals from the free components were observed in the ¹H NMR spectrum recorded after heating a solution of the [2]rotaxane **15**-H•PF₆ in CD₃SOCD₃ at 343 K for 2 h, confirming the interlocked nature of the two components.

The ¹H NMR spectrum of an equimolar mixture of bis(*p*tert-butylbenzyl)ammonium hexafluorophosphate and the macrocycle 13 in CD₃CN (8 mM) exhibited no signals that could be attributed to complex formation, even after heating at 323 K for 24 h. This suggests that, under such conditions, this macrocycle is incapable of passing over a *p-tert*-butylphenyl terminus. The formation of the pseudorotaxane $[13 \supset 1-H][PF_6]$ in a solution of an equimolar mixture of the macrocycle 13 and the threadlike salt 1-H-PF₆ in CD₃CN, with an association constant of $260 \,\mathrm{M}^{-1}$, therefore must have occurred as a result of the passage of the cis-1-[(Z)-alk-1'enyl]-2-vinylcyclopropane terminus through the cavity of the macrocycle. Heating an equimolar mixture of 13 and 1-H•PF₆ in CH₃NO₂ (70 mM) at 323 K for 48 h, followed by ion exchange (NH₄PF₆/H₂O) and chromatography processes, provided the [2]rotaxane 16-H-PF₆ in an isolated yield of 86% (Scheme 2). The subsequent hydrogenation turned the racemic [2]rotaxane 16-H-PF₆ into the achiral [2]rotaxane 17-H-PF₆ in 85% yield. Thus, the threading-followed-byswelling approach can also be applied to the efficient syntheses of [2]rotaxanes featuring the macrocycle 13 as an interlocked moiety.[18]

Because *p-tert*-butylphenyl and cycloheptane moieties are also effective stopper units for DB24C8,^[19] we applied a similar complexation/swelling/hydrogenation sequence to an equimolar mixture of DB24C8 and **1**-H•PF₆. As expected,

Figure 5. ¹H NMR spectra (400 MHz, CDCl₃, 298 K) of a) the racemic [2]rotaxane **14**-H•PF₆ and b) the achiral [2]rotaxane **15**-H•PF₆ obtained after the hydrogenation of **14**-H•PF₆.

Chem. Eur. J. 2010, 16, 6950-6960

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

A EUROPEAN JOURNAL

Scheme 2. The threading-followed-by-swelling approach used to synthesize [2]rotaxanes featuring three types of interlocked macrocycles.

we obtained the desired achiral [2]rotaxane 19-H·PF₆, in overall 64% yield after the swelling and hydrogenation reactions (Scheme 2).

Because this swelling process is initiated merely by heating, we suspected that the interlocking process could be performed under solvent-free conditions. We therefore concentrated an equimolar mixture of the macrocycle 12 and the threadlike salt 1-H-PF₆ in CDCl₃ under reduced pressure at room temperature to afford a solid film, which we suspected contained predominately the [2]pseudorotaxane [12]-H]- $[PF_6]$.^[20] After heating the solid film at 318 K for 72 h, we isolated the [2]rotaxane 14-H·PF₆ in 45% yield after purification and counterion exchange. We applied the same solvent-free approach to synthesize the [2]rotaxanes 16-H·PF₆ and 18-H-PF₆ in isolated yields of 55 and 50%, respectively, after heating solid films presumably containing predomi-[**13**⊃**1**-H][PF₆] [2]pseudorotaxanes nately the and $[DB24C8 \supset 1-H][PF_6]$, respectively. The presence of greater amounts of unidentified by-products in the ¹H NMR spectra of the crude products obtained under solvent-free "swelling" conditions, relative to those obtained in solution, suggests that the rates of the side reactions may increase significantly when the free threadlike salt 1-H-PF₆ and/or its corresponding [2]pseudorotaxanes are in close contact.

After confirming that our threading-followed-by-swelling protocol could be applied to the synthesis of asymmetrical [2]rotaxanes featuring one of three different macrocycles, we turned our attention to the construction of symmetrical [2]rotaxanes featuring two swellable stoppers from the threadlike salt **20**-H-PF₆ (Scheme 3). To avoid the genera-

Figure 6. ¹H NMR spectra (400 MHz, CDCl₃, 318 K) displaying the formation of the [2]rotaxane **28**-H-PF₆ from the [2]pseudorotaxane [DB24C8 \supset **20**-H][PF₆] after reaction times of a) 0, b) 16, c) 40, d) 52, and e) 70 h; f) spectrum of the isolated product.

Chem. Eur. J. 2010, 16, 6950-6960

FULL PAPER

Scheme 3. The threading-followed-by-swelling approach used to synthesize symmetrical [2] rotaxanes. DIBAL = diisobutylaluminum hydride, MS = molecular sieves.

tion of **20**-H•PF₆ as a diastereoisomeric mixture, we synthesized the enantiomerically pure aldehyde **26** and amine **27** from the optically pure aldehyde **4**.^[21]

The Wittig reaction of the optically pure aldehyde 4 and the nitrile 21 gave the Z-alkene 22. Removal of the ester protecting group from 22 under basic conditions, followed by PCC oxidation, afforded the aldehyde 24. The subsequent Wittig reaction of 24 with methylphosphonium bromide gave the nitrile 25, which was reasonably stable under ambient conditions and could be converted into the aldehyde 26 and the amine 27 under DIBAL- and LiAlH₄-mediated reduction reactions, respectively. Reduction of the imine formed through condensation of the aldehyde 26 and the amine 27, followed by protonation and ion exchange, gave the desired threadlike salt 20-H-PF₆ as a colorless oil (Scheme 3).

When an equimolar mixture of the threadlike salt **20**-H•PF₆ and DB24C8 in CDCl₃ was heated at 318 K, the ¹H NMR spectra revealed a gradual decrease in intensity of the signals for the olefinic protons of the dialkenylcyclopropane-terminated [2]pseudorotaxane [DB24C8 \supset **20**-H][PF₆] and a concomitant rise in the intensities of the signals for the olefinic protons of the symmetrical cycloheptadiene-terminated [2]rotaxane **28**-H•PF₆, (Figure 6), which was isolated in 68% yield after column chromatography and ion exchange. After reducing the two chiral cycloheptadiene termini of the [2]rotaxane **28**-H•PF₆ through hydrogenation, we obtained the achiral [2]rotaxane **29**-H·PF₆ in 79% yield (Scheme 3). We employed the same threading/swelling/hydrogenation approach using the macrocycles **12** and **13** and the threadlike salt **20**-H·PF₆ to obtain the achiral biscycloheptane-terminated [2]rotaxanes **31**-H·PF₆ and **33**-H·PF₆, respectively.

Single crystals suitable for X-ray crystallography were obtained by the liquid diffusion of hexane into a solution of the [2]rotaxane **29**-H-PF₆ in CHCl₃. The solid-state structure^[22] (Figure 7) reveals the expected [2]rotaxane molecular geometry with one DB24C8 macrocycle trapped between two terminal cycloheptane stoppers.

Figure 7. Ball-and-stick representation of the solid-state structure of the [2]rotaxane 29^+ .

www.chemeurj.org

Conclusion

The swelling of *cis*-1-[(Z)-alk-1'-enyl]-2-vinylcyclopropane termini is a mild and high-yielding method for the synthesis of symmetric and asymmetric [2]rotaxanes. Hydrogenation of the products of the threading-followed-by-swelling protocol provides achiral molecular [2]rotaxanes, that is, it erases the chiral information from the original cycloheptadiene termini. Because different types of macrocycles can be interlocked within [2]rotaxane structures when using this threading-followed-by-swelling approach, we believe that this protocol has the potential for application in the construction of more complicated interlocked systems in the future.

Experimental Section

General: All glassware, stirrer bars, syringes, and needles were either oven- or flame-dried prior to use. All reagents, unless otherwise indicated, were obtained from commercial sources. Anhydrous CH_2Cl_2 and MeCN were obtained by distillation from CaH_2 under N_2 . Reactions were conducted under an N_2 or Ar atmosphere. Thin-layer chromatography (TLC) was performed on Merck 0.25 mm silica gel (Merck Art. 5715). Column chromatography was performed by using Kieselgel 60 (Merck, 70–230 mesh). Melting points were determined by using a Fargo MP-2D melting point apparatus. To obtain the NMR spectra, the deuterated solvent was used as the lock, whereas either the solvent's residual protons or TMS was employed as the internal standard. Chemical shifts are reported in parts per million (ppm). Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad).

(±)-*cis*-1-Butyryloxymethyl-2-hydroxymethylcyclopropane (3): Butyryl chloride (7.39 mL, 7.5 g, 70 mmol) was slowly added to a mixture of **2** (7.7 g, 75.5 mmol), DMAP (0.46 g, 3.8 mmol), and Et₃N (23 mL, 16.7 g, 165 mmol) in CH₂Cl₂ (150 mL) at 0 °C. The mixture was stirred at room temperature for 2 h and was then partitioned between CH₂Cl₂ (300 mL) and water (300 mL). The organic phase was dried (MgSO₄) and concentrated to give a crude product that was purified chromatographically (SiO₂; EtOAc/hexane, 2:8) to afford **3** as a colorless oil (5.0 g, 42%). ¹H NMR (400 MHz, CDCl₃): δ =0.22 (q, *J*=5.2 Hz, 1H), 0.85 (td, *J*=84, 5.6 Hz 1H), 0.95 (t, *J*=7.2 Hz, 3H), 1.23–1.39 (m, 2H), 1.60–1.70 (m, 2H), 2.31 (t, *J*=7.6 Hz, 2H), 3.38 (dd, *J*=9.2, 12 Hz, 1H), 3.79 (dd, *J*=9.2, 12 Hz, 1H), 3.86 (dd, *J*=5.6, 12 Hz, 1H), 4.50 ppm (dd, *J*=5.6, 12 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =8.2, 14.1, 14.8, 18.8, 19.1, 36.5, 6.2.6, 64.5, 172.9 ppm; HRMS (ESI): *m/z*: calcd for C₉H₁₇O₃: 173.1178 [*M*+H]⁺; found: 173.1155.

(±)-*cis*-1-Butyryloxymethyl-2-formylcyclopropane (4): A mixture of the alcohol **3** (3.40 g, 19.8 mmol), NaOAc (0.950 g, 11.6 mmol), and PCC (8.4 g, 39 mmol) in CH₂Cl₂ (160 mL) was stirred at room temperature for 3 h and then filtered and partitioned between CH₂Cl₂ (200 mL) and water (200 mL). The organic phase was dried (MgSO₄) and concentrated to give the crude product, which was purified chromatographically (SiO₂; EtOAc/hexane, 5:95) to afford **4** as a colorless oil (2.6 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ =0.93 (t, *J*=7.2 Hz, 3H), 1.23–1.38 (m, 2H), 1.58–1.68 (m, 2H), 1.81–1.92 (m, 1H), 2.02–2.10 (m, 1H), 2.26 (t, *J*=7.2 Hz, 2H), 3.94 (dd, *J*=12, 9.2 Hz, 1H), 4.50 (dd, *J*=12, 6 Hz, 1H), 9.51 ppm (d, *J*=4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =13.2, 14.1, 18.8, 22.9, 27.0, 36.3, 62.3, 172.7, 199.1 ppm; HRMS (ESI): *m/z*: calcd for C₉H₁₄KO₃: 209.0580 [*M*+K]⁺; found: 209.0568.

(\pm)-*cis*-1-Butyryloxymethyl-2-[(*Z*)-4-cyanobut-1-enyl]cyclopropane (6): NaHMDS (2*M* in THF, 15 mL, 30 mmol) was added to a solution of (3cyanopropyl)triphenylphosphonium bromide (11.6 g, 28.3 mmol) in THF (150 mL) at 0°C. The mixture was stirred for 10 min and then the aldehyde **4** (2.80 g, 16.5 mmol) in THF (15 mL) was added to the ylide solution. After 3.5 h at 0°C, the mixture was poured into petroleum ether (300 mL) to precipitate triphenylphosphine oxide. The suspension was filtered, the solvent was evaporated, and the residue was purified chromatographically (SiO₂; EtOAc/hexane, 5:95) to afford **6** as a colorless oil (3.5 g, 96%). ¹H NMR (400 MHz, CDCl₃): δ =0.41–0.48 (m, 1H), 0.94 (t, *J*=7.2 Hz, 3H), 1.01–1.12 (m, 1H), 1.37–1.47 (m, 1H), 1.58–1.75 (m, 3H), 2.28 (t, *J*=7.2 Hz, 2H), 2.37–2.43 (m, 2H), 2.48–2.57 (m, 2H), 3.91 (dd, *J*=8.4, 12 Hz, 1H), 4.18 (dd, *J*=6.8, 12 Hz, 1H), 5.23 (t, *J*=9.6 Hz, 1H), 5.45 ppm (dt, *J*=8.4, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 12.9, 14.1, 14.6, 17.4, 17.8, 18.8, 24.0, 36.4, 64.7, 119.0, 126.4, 131.0, 173.0 ppm; HRMS (ESI): *m/z*: calcd for C₁₃H₁₉NaNO₂: 244.1314 [*M*+Na]⁺; found: 244.1263.

(±)-*cis*-1-[(*Z*)-4-Cyanobut-1-enyl]-2-hydroxymethylcyclopropane (7): A mixture of the ester 6 (3.50 g, 15.8 mmol) and K₂CO₃ (6.60 g, 47.5 mmol) in MeOH (16 mL) was stirred at room temperature for 30 min and then partitioned between CH₂Cl₂ (100 mL) and water (100 mL). The organic phase was dried (MgSO₄) and concentrated to give the crude product, which was purified chromatographically (SiO₂; EtOAc/hexane, 2:8) to afford **7** as a colorless oil (2.0 g, 84%). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.14$ (q, J = 5.2 Hz, 1H), 1.04 (td, J = 8, 5.2 Hz, 1H), 1.34–1.44 (m, 1H), 1.65–1.76 (m, 1H), 2.38–2.45 (m, 2H), 2.46–2.57 (m, 2H), 3.44 (dd, J = 8.8, 11.6 Hz, 1H), 3.77 (dd, J = 5.6, 11.6 Hz, 1H), 5.28 (dd, J = 10, 10.8 Hz, 1H), 5.45 ppm (dt, J = 10.8, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.8$, 14.5, 17.9, 21.6, 23.9, 63.2, 119.3, 126.0, 131.7 ppm; HRMS (ESI): m/z: calcd for C₉H₁₄NO: 152.1075 [M+H]⁺; found: 152.1120.

(±)-*cis*-1-[(*Z*)-5-Aminopent-1-enyl]-2-hydroxymethylcyclopropane (8): LiAlH₄ (1.30 g, 34.2 mmol) was added to a solution of the nitrile 7 (1.0 g, 6.6 mmol) in THF (150 mL) at 0 °C. The mixture was stirred at 0 °C for 30 min and then at room temperature for 1 h. Water was added to the solution until a white suspension formed. The solids were filtered off and the filtrate was dried (MgSO₄) and concentrated to yield a yellow oil (0.88 g, 86%), which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃): δ =0.34 (q, *J*=5.2 Hz, 1H), 0.99 (td, *J*=8.4, 5.2 Hz, 1H), 1.31–1.42 (m, 1H), 1.54–1.75 (m, 3H), 2.14–2.31 (m, 2H), 2.75 (t, *J*=6.8 Hz, 2H), 3.37 (dd, *J*=11.6, 9.6 Hz, 1H), 3.78 (dd, *J*= 11.6, 5.6 Hz, 1H), 5.12 (dd, *J*=10.8, 9.2 Hz, 1H), 5.46 ppm (dt, *J*=10.8, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =12.6, 14.4, 21.4, 25.3, 32.4, 41.4, 63.3, 128.7, 130.5 ppm; HRMS (ESI): *m*/*z*: calcd for C₉H₁₈NO: 156.1388 [*M*+H]⁺; found: 156.1457.

(±)-(Z)-N-(9H-Fluoren-9-ylmethoxycarbonyl)-N-(4-tert-butylbenzyl)-5-(cis-2-hydroxymethylcyclopropyl)pent-4-en-1-amine (9): A solution of the amine 8 (1.15 g, 7.4 mmol) and 4-tert-butylbenzaldehyde (1.2 g, 7.4 mmol) in toluene (50 mL) was heated under reflux in a Dean-Stark apparatus for 16 h. After cooling to room temperature, the solvent was evaporated under reduced pressure. The residue was dissolved in MeOH (40 mL), cooled to 0°C, and NaBH4 (1.6 g, 42.3 mmol) was added. The solution was stirred at ambient temperature for 1 h before being partitioned between CH₂Cl₂ (150 mL) and water (150 mL). The organic phase was dried (MgSO₄) and concentrated to give a crude product, which was used in the next step without further purification. The crude amine was dissolved in THF (30 mL) and a solution of aqueous Na₂SO₄ (1 N, 30 mL) was added. The mixture was then cooled to 0°C and Fmoc-Cl (1.9 g, 7.3 mmol) was added. The stirred mixture was warmed to room temperature over a period of 1 h and was then partitioned between CH2Cl2 (200 mL) and water (200 mL). The organic layer was dried and concentrated to give a crude product, which was purified chromatographically (SiO₂; MeOH/CH₂Cl₂, 2:98) to afford 9 as a colorless oil (1.2 g, 26% from 7). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.35$ (q, J = 5.2 Hz, 1H), 0.98 (td, J=8.4, 4.8 Hz, 1 H), 1.28-1.43 (m, 11 H), 1.56-1.72 (m, 2 H), 1.89-2.02 (m, 1H), 2.11-2.20 (m, 1H), 3.01 (t, J=7.6 Hz, 1H), 3.20-3.40 (m, 1H), 3.44 (t, J=9.6 Hz, 1H), 3.71-3.79 (m, 1H), 4.18-4.27 (m, 1H), 4.32-4.45 (m, 2H), 4.48 (d, J=6.0 Hz, 1H), 4.59 (d, J=6.0 Hz, 1H), 5.03-5.15 (m, 1H), 5.24–5.33 (m, 0.5H), 5.39–5.47 (m, 0.5H), 7.01 (d, J = 7.6 Hz, 1H), 7.10 (d, J=8.4 Hz, 1H), 7.21 (t, J=7.2 Hz, 1H), 7.28–7.36 (m, 3H), 7.36-7.41 (m, 2H), 7.45 (d, J=7.2 Hz, 1H), 7.60 (d, J=7.2 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.75 ppm (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.6, 12.7, 14.4, 14.4, 21.1, 21.2, 25.0, 27.7, 28.0, 31.6, 34.7,$ 46.1, 46.6, 47.5, 47.6, 49.6, 50.2, 63.4, 63.5, 66.8, 67.3, 119.5, 124.3, 124.5, 125.0, 126.4, 126.5, 126.9, 127.1, 128.2, 128.4, 130.0, 134.0, 134.1, 140.7,

FULL PAPER

140.9, 143.4, 143.5, 149.5, 155.6 ppm; HRMS (ESI): m/z: calcd for C₃₅H₄₂NO₃: 524.3165 [*M*+H]⁺: found: 524.3132.

(±)-(Z)-N-(9H-Fluoren-9-ylmethoxycarbonyl)-N-(4-tert-butylbenzyl)-5-(cis-2-formylcyclopropyl)pent-4-en-1-amine (10): A mixture of alcohol 9 (160 mg, 0.3 mmol), NaOAc (20 mg, 0.24 mmol), and PCC (200 mg, 0.93 mmol) in CH₂Cl₂ (5 mL) was stirred at room temperature for 3 h before being filtered and partitioned between CH2Cl2 (30 mL) and water (30 mL). The organic layer was dried (MgSO₄) and concentrated to give a crude product that was purified chromatographically (SiO2; MeOH/ CH₂Cl₂, 1:99) to afford 10 as a colorless oil (130 mg, 82%). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_2); \delta = 1.26 - 1.42 \text{ (m, 12H)}, 1.55 - 1.67 \text{ (m, 1H)}, 1.83 - 1.95$ (m, 1H), 2.02–2.29 (m, 3H), 2.96 (t, J=7.2 Hz, 1H), 3.21–3.32 (m, 1H), 4.18–4.27 (m, 1 H), 4.35–4.42 (m, 2 H), 4.47 (d, J = 6.8 Hz, 1 H), 4.60 (d, J = 5.6 Hz, 1 H), 5.22–5.34 (m, 1.5 H), 5.42–5.50 (m, 0.5 H), 7.01 (d, J =8.0 Hz, 1H), 7.09 (d, J=8.0 Hz, 1H), 7.20-7.24 (m, 1H), 7.27-7.41 (m, 5H), 7.44 (d, J=7.2 Hz, 1H), 7.59 (d, J=7.2 Hz, 1H), 7.69-7.77 (m, 2H), 9.25 ppm (d, J = 3.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.8$, 22.0, 25.2, 25.3, 27.6, 27.8, 30.4, 31.7, 34.7, 46.1, 46.9, 47.5, 47.7, 49.8, 50.2, 66.7, 67.3, 119.6, 124.3, 124.5, 125.0, 125.1, 125.7, 126.4, 126.6, 127.0, 127.2, 131.8, 131.9, 134.1, 140.8, 140.9, 143.4, 143.5, 149.6, 155.6, 155.9, 199.8, 199.9 ppm; HRMS (ESI): m/z: calcd for C₃₅H₄₀NO₃: 522.3008 [M+H]⁺; found: 522.3028.

$(\pm) \text{-} (Z) \text{-} N \text{-} (4 \text{-} tert \text{-} Butylbenzyl) \text{-} 5 \text{-} (cis \text{-} 2 \text{-} ethenylcyclopropyl) pent \text{-} 4 \text{-} en \text{-} 1 \text{-} 1 \text{-} en \text{-} 1 \text{-} 1 \text{-} en \text{-} 1 \text{-} 1$

amine (11): NaHMDS (2M in THF, 1.2 mL, 2.4 mmol) was added to a solution of methyltriphenylphosphonium bromide (700 mg, 2.5 mmol) in THF (150 mL) at -78°C. The mixture was stirred for 10 min and a solution of the aldehyde 10 (400 mg, 0.77 mmol) in THF (15 mL) was added. The mixture was then stirred at 0°C for 3 h before being poured into petroleum ether (300 mL) to precipitate triphenylphosphine oxide. After filtration, the organic solvent was evaporated and the residue purified chromatographically (SiO₂; MeOH/CH₂Cl₂, $0 \rightarrow 2\%$) to give 11 as a colorless oil (93 mg, 41 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.54$ (q, J =5.6 Hz, 1H), 1.13 (td, J=8.0, 5.6 Hz, 1H), 1.30 (s, 9H), 1.58-1.86 (m, 4H), 2.18 (q, J=7.2 Hz, 2H), 2.67 (t, J=7.2 Hz, 2H), 3.75 (s, 2H), 4.97 (dd, J=10.4, 2 Hz, 1 H), 5.02-5.13 (m, 2 H), 5.41 (dt, J=10.8, 7.2 Hz, 1H), 5.47–5.58 (m, 1H), 7.25 (d, *J*=8.4 Hz, 2H), 7.33 ppm (d, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.2$, 17.6, 22.8, 25.7, 29.8, 31.7, 34.8, 48.9, 53.5, 114.1, 125.0, 127.7, 128.8, 129.7, 135.9, 137.5, 149.5 ppm; HRMS (ESI): m/z: calcd for C₂₁H₃₂N: 298.2535 [M+H]⁺; found: 298.2513.

$(\pm) \textbf{-} (Z) \textbf{-} N \textbf{-} (4 \textbf{-} tert\textbf{-} Butylbenzyl) \textbf{-} 5 \textbf{-} (cis\textbf{-} 2\textbf{-} ethenylcyclopropyl) pent-4 \textbf{-} en\textbf{-} 1 \textbf{-} \\$

ammonium hexafluorophosphate (1-H-PF₆): HCl (1 N, 1 mL) was added to a solution of the amine 11 (30 mg, 0.10 mmol) in CH₃CN (1 mL). The organic solvent was evaporated and the white precipitate was filtered off, dissolved in CH₃CN (1 mL), and treated with a solution of saturated aqueous NH₄PF₆ (2 mL). The organic solvent was evaporated and the precipitate collected to afford 1-H-PF₆ as a white solid (33 mg, 74%). M.p. >175°C decomp; ¹H NMR (400 MHz, CD₃CN): $\delta = 0.59$ (q, J =5.2 Hz, 1H), 1.16 (td, J=8.4, 4.8 Hz, 1H), 1.32 (s, 9H), 1.66-1.89 (m, 4H), 2.15-2.24 (br, 2H), 3.02 (t, J=7.6 Hz, 2H), 4.11 (s, 2H), 4.97 (dd, J=10.4, 2.0 Hz, 1 H), 5.09-5.20 (m, 2 H), 5.39 (dt, J=10.4, 7.2 Hz, 1 H), 5.50–5.60 (m, 1 H), 7.37 (d, *J*=8.4 Hz, 2 H), 7.50 ppm (d, *J*=8.4 Hz, 2 H); ¹³C NMR (100 MHz, CD₃CN): $\delta = 15.2$, 17.9, 23.3, 24.8, 26.4, 31.2, 35.2, $48.2,\ 51.8,\ 114.2,\ 126.1,\ 127.7,\ 128.0,\ 129.9,\ 130.8,\ 138.3,\ 152.8\ ppm;$ HRMS (ESI): m/z: calcd for C₂₁H₃₂N: 298.2529 [1-H]+; found: 298.2542. [2]Rotaxane 14-H-PF₆: A solution of the macrocycle 12 (45.4 mg, 0.1 mmol) and the threadlike salt $1-H\cdot PF_6$ (44.4 mg, 0.1 mmol) in CH₃NO₂ (1.00 mL) was heated at 45 °C for 3 d. The yellow solution was concentrated to give a yellow residue that was purified chromatographically (SiO₂; hexane/EtOAc/MeOH, 10:10:0 then 10:10:1) to afford 14-H•PF₆ as a white solid (55.0 mg, 61%). M.p. 173–175°C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.23-0.31$ (m, 2H), 0.54-0.72 (m, 4H), 1.26 (s, 9H), 1.80-2.01 (m, 1H), 2.10-2.20 (m, 4H), 2.70-2.83 (m, 1H), 2.92-3.05 (m, 1H), 4.38 (d, J=9.6 Hz, 2H), 4.44 (dd, J=9.6, 3.1 Hz, 2H), 4.54 (d, J=11.6 Hz, 2H), 4.64 (d, J=11.6 Hz, 2H), 5.23 (s, 4H), 5.35-5.46 (m, 1H), 5.62–5.73 (m, 3H), 6.81 (d, J=8.3 Hz, 2H), 6.83–6.92 (m, 4H), 7.09–7.20 (m, 6H), 7.24 (d, J=8.3 Hz, 2H), 7.39 (s, 4H), 7.60 ppm (t, J= 7.7 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 23.3, 28.8, 31.2, 32.1, 32.5, 34.6, 36.8, 47.1, 50.4, 67.8, 73.9, 74.0, 115.8, 116.7, 122.1, 125.6, 127.2, 127.7, 128.1, 128.2, 128.3, 128.5, 129.1, 131.2, 134.7, 136.7, 138.1, 152.1, 155.3, 157.7 ppm {one extra aromatic signal appeared, presumably because of the existence of $[C-H\cdots\pi]$ and/or $[+N-H\cdots\pi]$ interactions between the macrocycle's phenol rings and the $CH_2NH_2+CH_2$ center under these conditions, thereby slowing the flipping of the phenol rings (see ref. [14]); when the interlocked macrocycle was DB24C8 (i.e., in **18**-H·PF₆), no additional aromatic signal was observed]; HRMS (ESI): m/z: calcd for $C_{50}H_{59}N_2O_4$: 751.4475 [**14**-H]⁺; found: 751.4433.

[2]Rotaxane 15-H·PF₆: PtO₂ (1 mg, 4 µmol) was added to a solution of 14-H-PF₆ (30 mg, 33.4 µmol) in THF (2 mL) and the mixture was stirred under a H₂ atmosphere for 30 min. After filtration, the organic solvent was evaporated and the residue was purified chromatographically (SiO₂; $CH_2Cl_2/MeOH$, 98:2) to afford 15-H-PF₆ as a white solid (22.7 mg, 75%). M.p. 93–95 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 0.19-0.29$ (m, 2H), 0.39– 0.42 (m, 2H), 0.61-0.72 (m, 2H), 1.02-1.08 (m, 6H), 1.28 (s, 9H), 1.33-1.65 (m, 7H), 2.16–2.19 (m, 2H), 4.39 (d, J=9.2 Hz, 2H), 4.44 (d, J= 9.2 Hz, 2H), 4.56 (d, J=11.6 Hz, 2H), 4.65 (d, J=11.6 Hz, 2H), 5.25 (s, 4H), 6.82 (d, J=8.0 Hz, 2H), 6.88-6.92 (m, 4H), 7.11-7.14 (m, 6H), 7.24 (d, J = 8.8 Hz, 2H), 7.39 (s, 4H), 7.61 ppm (t, J = 7.8 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3) \delta = 23.7, 26.3, 28.5, 31.3, 34.1, 34.5, 34.7, 39.0, 47.3,$ 50.5, 67.8, 74.0, 74.1, 115.6, 116.6, 122.0, 125.5, 127.1, 127.6, 127.9, 128.2, 131.1, 136.6, 137.9, 151.9, 155.1, 157.5 ppm {one extra aromatic signal appeared, presumably because of the existence of [C-H..., and/or [+N- $H \cdot \pi$ interactions between the macrocycle's phenol rings and the CH_2NH_2 + CH_2 center under these conditions, thereby slowing the flipping of the phenol rings (see ref. [14]); when the interlocked macrocycle was DB24C8 (i.e., in **19-H**·PF₆), no additional aromatic signal was observed}: HRMS (ESI): m/z: calcd for C₅₀H₆₃N₂O₄: 755.4788 [15-H]+; found: 755.4773.

[2]Rotaxane 16-H-PF₆: A solution of 1-H-PF₆ (30 mg, 0.07 mmol) and the macrocycle 13 (29 mg, 0.07 mmol) in CH₃NO₂ (1 mL) was stirred at 50°C for 48 h. After evaporation of the solvent, the residue was purified chromatographically (SiO₂; MeOH/CH₂Cl₂, $0 \rightarrow 1\%$) and the desired [2]rotaxane 16-H-PF₆ was isolated as a white solid (51 mg, 86%). M.p. >210 °C decomp; ¹H NMR (400 MHz, CD₃NO₂): $\delta = -0.08$ to +0.06 (m, 2H), 0.49-0.67 (m, 2H), 0.88-1.01 (m, 2H), 1.35 (s, 9H), 2.06-2.17 (m, 1H), 2.24-2.38 (m, 2H), 2.62-2.68 (m, 2H), 2.76-2.87 (m, 1H), 2.95-3.12 (m, 3H), 3.32-3.41 (m, 2H), 3.50-3.60 (m, 2H), 3.60-3.69 (m, 2H), 4.38 (d, J=9.2 Hz, 2H; another doublet (2H) overlapped with the solvent peak), 5.26-5.38 (m, 4H), 5.56-5.63 (m, 1H), 5.68-5.83 (m, 3H), 6.85 (br, 2H), 7.00-7.06 (m, 2H), 7.08-7.15 (m, 2H), 7.18-7.31 (m, 6H), 7.41 (s, 4H), 7.59 ppm (d, J=8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃NO₂): $\delta =$ 25.5, 30.2, 32.0, 33.6, 34.1, 36.1, 38.7, 48.4, 52.5, 69.1, 71.0, 71.6, 75.0, 116.5, 117.4, 117.9, 127.0, 128.2, 128.8, 129.1, 129.7, 130.5, 130.6, 132.1, 132.4, 136.3, 138.2, 154.2, 158.7 ppm {two extra aromatic signals appeared, presumably because of the existence of $[C-H\cdots\pi]$ and/or $[^+N-H\cdots\pi]$ interactions between the macrocycle's phenol rings and the CH₂NH₂+CH₂ center under these conditions, thereby slowing the flipping of the phenol rings (see ref. [14]); when the interlocked macrocycle was DB24C8 (i.e., in 18-H·PF₆), no additional aromatic signal was observed}; HRMS (ESI): *m*/*z*: calcd for C₄₇H₆₀NO₅: 718.4471 [16-H]⁺; found: 718.4465.

[2]Rotaxane 17-H·PF₆: PtO₂ (1 mg, 4 µmol) was added to a solution of 16-H-PF₆ (20 mg, 23 µmol) in THF (0.5 mL) and the mixture stirred under a H₂ atmosphere for 30 min. After filtration, the organic solvent was evaporated and the residue purified chromatographically (SiO₂; MeOH/CH₂Cl₂, 1:99) to afford the [2]rotaxane 17-H-PF₆ as a white solid (17 mg, 85 %). M.p. 291–293 °C; ¹H NMR (400 MHz, CD₃NO₂): $\delta = -0.09$ to +0.02 (m, 2H), 0.36-0.44 (m, 2H), 0.82-0.95 (m, 2H), 1.16-1.27 (m, 2H), 1.34 (s, 9H), 1.41-1.75 (m, 11H), 2.62-2.67 (m, 2H), 3.01-3.09 (m, 2H), 3.32-3.39 (m, 2H), 3.52-3.59 (m, 2H), 3.61-3.68 (m, 2H), 4.39 (d, J=9.6 Hz, 2H; another doublet (2H) was covered by the solvent peak), 5.26-5.38 (m, 4H), 6.83 (br, 2H), 6.99-7.05 (m, 2H), 7.08-7.14 (m, 2H), 7.18–7.26 (m, 6H), 7.41 (s, 4H), 7.58 ppm (d, J = 8.0 Hz, 2H); ¹³C NMR $(100 \text{ MHz}, \text{CD}_3\text{NO}_2)$: $\delta = 25.7, 27.8, 30.3, 32.0, 35.3, 36.0, 36.1, 40.8, 48.6,$ 52.5, 69.1, 71.0, 71.6, 75.0, 117.4, 117.8, 127.0, 128.7, 128.8, 130.5, 130.6, 132.0, 132.4, 138.2, 154.2, 158.7 ppm {two extra aromatic signals appeared, presumably because of the existence of $[C-H\cdots\pi]$ and/or $[+N-H\cdots\pi]$ in-

Chem. Eur. J. 2010, 16, 6950-6960

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

teractions between the macrocycle's phenol rings and the $CH_2NH_2^+CH_2$ center under these conditions, thereby slowing the flipping of the phenol rings (see ref. [14]); when the interlocked macrocycle was DB24C8 (i.e., in **19**-H-PF₆), no additional aromatic signal was observed]; HRMS (ESI): m/z: calcd for $C_{47}H_{64}NO_5$: 722.4784 [**17**-H]⁺; found: 722.4752.

[2]Rotaxane 18-H-PF₆: A solution of **1**-H-PF₆ (10 mg, 23 µmol) and DB24C8 (10.1 mg, 23 µmol) in CHCl₃ (0.5 mL) was stirred at 50 °C for 48 h. After evaporation of the solvent, the residue was purified chromatographically (SiO₂; MeOH/CH₂Cl₂, 1:99) to yield the [2]rotaxane **18**-H-PF₆ as a sticky colorless liquid (15 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ = 0.86–1.06 (m, 2H), 1.26 (s, 9H), 1.32–1.42 (m, 2H), 1.73–1.93 (m, 2H), 2.10–2.21 (m, 1H), 2.56–2.67 (m, 1H), 2.80–2.91 (m, 1H), 3.07–3.20 (m, 2H), 3.33–3.49 (m, 4H), 3.56–3.68 (m, 4H), 3.75–3.88 (m, 8H), 4.03–4.15 (m, 4H), 4.17–4.30 (m, 4H), 4.49–4.59 (m, 2H), 5.14–5.21 (m, 1H), 5.48–5.60 (m, 3H), 6.81–6.97 (m, 8H), 7.14 (br, 2H), 7.27 (d, J= 8 Hz, 2H), 7.33 ppm (d, J=8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 24.6, 28.7, 31.6, 32.7, 32.9, 35.0, 36.6, 49.1, 52.1, 68.3, 70.2, 70.7, 112.5, 121.5, 125.2, 127.8, 127.9, 128.7, 128.8, 129.1, 134.5, 146.9, 152.0 ppm; HRMS (ESI): m/z: calcd for C₄₅H₆₄NO₈: 746.4631 [**18**-H]⁺; found: 746.4634.

[2]Rotaxane 19-H·PF₆: PtO₂ (1 mg, 4 µmol) was added to a solution of 18-H·PF₆ (20 mg, 22 µmol) in THF (0.5 mL) and the mixture stirred under a H₂ atmosphere for 30 min. After filtration, the organic solvent was evaporated and the residue purified chromatographically (SiO₂; MeOH/CH₂Cl₂, 1:99) to afford the [2]rotaxane 19-H·PF₆ as a sticky colorless liquid (17 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ =0.77–0.92 (m, 2H), 1.04–1.54 (m, 24H), 3.03–3.14 (m, 2H), 3.38–3.46 (m, 4H), 3.58–3.66 (m, 4H), 3.77–3.90 (m, 8H), 4.07–4.15 (m, 4H), 4.20–4.28 (m, 4H), 4.53–4.59 (m, 2H), 6.83–6.76 (m, 8H), 7.15 (br, 2H), 7.30 (d, *J*=8 Hz, 2H), 7.36 ppm (d, *J*=8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =24.8, 26.5, 28.7, 31.6, 34.4, 34.8, 35.0, 38.6, 49.4, 52.1, 68.3, 70.2, 70.7, 112.5, 121.5, 125.2, 128.9, 129.1, 146.9, 152.0 ppm; HRMS (FAB): *m/z*: calcd for C₄₅H₆₈NO₈: 750.4945 [19-H]⁺; found: 750.4955.

(1R,2R)-cis-1-Butyryloxymethyl-2-[(Z)-6-cyanohex-1-enyl]cyclopropane (22): NaHMDS (2M in THF, 41 mL, 82 mmol) was added to a solution of (5-cyanopentyl)triphenylphosphonium hexafluorophosphate (41.3 g, 82 mmol) in THF (400 mL) at 0°C. The mixture was stirred for 10 min and then a solution of the optically pure aldehyde 4 (10.8 g, 63.5 mmol) in THF (55 mL) was added. After stirring at 0 °C for 3 h, petroleum ether (500 mL) was added to the mixture. The resulting precipitate was filtered off, the filtrate concentrated, and the residue purified chromatographically (SiO₂; hexane/EtOAc, 7:3) to afford the alkene 22 as a yellow oil (13.0 g, 82 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.39$ (q, J = 5.3 Hz, 1H), 0.94 (t, J=7.4 Hz, 3 H), 1.04 (td, J=8.3, 5.3 Hz, 1 H), 1.35–1.40 (m, 1 H), 1.52-1.71 (m, 7H), 2.16-2.23 (m, 2H), 2.28 (t, J=7.4 Hz, 2H), 2.35 (t, J= 7.2 Hz, 2H), 3.95 (dd, J=11.6, 8.0 Hz, 1H), 4.14 (dd, J=11.6, 7.0 Hz, 1 H), 5.08 (t, J = 10.0 Hz, 1 H), 5.39 ppm (dt, J = 10.0, 7.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.4$, 13.7, 14.3, 16.8, 17.1, 18.5, 24.9, 26.7, 28.5, 36.2, 64.9, 119.5, 128.5, 130.1, 173.5 ppm; HRMS (ESI): m/z: calcd for C₁₅H₂₃NaNO₂: 272.1627 [M+Na]+; found: 272.1601.

$(1R,\!2R)\text{-}cis\text{-}1\text{-}[(Z)\text{-}6\text{-}Cyanohex\text{-}1\text{-}enyl]\text{-}2\text{-}hydroxymethylcyclopropane}$

(23): A mixture of alkene 22 (15.3 g, 61.4 mmol) and K₂CO₃ (25.3 g, 183 mmol) was stirred in MeOH (70 mL) at room temperature for 30 min and then partitioned between CH₂Cl₂ (300 mL) and H₂O (200 mL). The organic layer was dried (MgSO₄) and concentrated to give 23 as a colorless oil (10.0 g, 91 %). ¹H NMR (400 MHz, CDCl₃): δ =0.39 (q, *J*=5.3 Hz, 1H), 1.03 (td, *J*=8.3, 5.3 Hz, 1H), 1.36–1.42 (m, 1H), 1.51–1.61 (m, 2H), 1.64–1.74 (m, 3H), 2.19–2.26 (m, 2H), 2.36 (t, *J*=7.0 Hz, 2H), 3.46 (dd, *J*=11.4, 9.0 Hz, 1H), 3.77 (dd, *J*=11.4, 6.8 Hz, 1H), 5.14 (t, *J*=10.3 Hz, 1H), 5.43 ppm (dt, *J*=10.3, 7.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =12.2, 13.9, 16.9, 20.5, 24.7, 26.5, 28.3, 63.0, 119.5, 128.8, 129.7 ppm; HRMS (ESI): *m*/z: calcd for C₁₁H₁₇NaNO: 202.1208 [*M*+Na]⁺; found: 202.1201.

(1R,2R)-cis-1-[(Z)-6-Cyanohex-1-enyl]-2-formylcyclopropane (24): A solution of alcohol 23 (10.0 g, 55.8 mmol) in CH₂Cl₂ (20 mL) was added to a mixture of PCC (28.4 g, 132 mmol), NaOAc (3.24 g, 39.5 mmol), and 4 Å molecular sieves (10.0 g) in CH₂Cl₂ (140 mL) and the mixture was stirred at room temperature for 2 h. After adding Celite (10.0 g) and di-

ethyl ether (100 mL), the mixture was filtered through a pad of SiO₂. The filtrate was then concentrated and purified chromatographically (SiO₂; hexane/EtOAc, 7:3) to afford **24** as a colorless oil (6.7 g, 68 %). ¹H NMR (400 MHz, CDCl₃): δ =1.42–1.46 (m, 2H), 1.53–1.60 (m, 2H), 1.63–1.69 (m, 2H), 2.10–2.27 (m, 4H), 2.34 (t, *J*=7.0 Hz, 2H), 5.35 (t, *J*=9.5 Hz, 1H), 5.48 (dt, *J*=11.4, 7.0 Hz, 1H), 9.28 ppm (d, *J*=5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =15.5, 17.2, 21.6, 24.9, 26.8, 28.3, 30.2, 119.5, 126.4, 131.9, 200.4 ppm; HRMS (ESI): *m*/*z*: calcd for C₁₁H₁₅NaNO: 200.1051 [*M*+Na]⁺; found: 200.1021.

(15,2 *R*)-*cis*-1-[(*Z*)-6-Cyanohex-1-enyl]-2-ethenylcyclopropane (25): A mixture of NaHMDS (2 $mathef{M}$ in THF, 13.6 mL, 27 mmol) and methyltriphenylphosphonium bromide (9.8 g, 27 mmol) in THF (135 mL) was stirred at room temperature for 10 min and then cooled to -78 °C. A solution of aldehyde 24 (2.7 g, 15.2 mmol) in THF (16.2 mL) was added and the resulting mixture was stirred at -78 °C for 30 min before being poured into petroleum ether (300 mL) and filtered. The filtrate was concentrated and the residue purified chromatographically (SiO₂; hexane/EtOAc, 9:1) to afford 25 as a yellow oil (2.0 g, 75 %). ¹H NMR (400 MHz, CDCl₃): δ = 0.57 (q, *J*=5.3 Hz, 1H), 1.16 (td, *J*=8.2, 5.3 Hz, 1H), 1.51–1.59 (m, 2H), 1.65–1.81 (m, 4H), 2.19 (q, *J*=7.3 Hz, 2H), 2.34 (t, *J*=7.0 Hz, 2H), 4.99 (dd, *J*=10.4, 2 Hz, 1H), 5.07–5.14 (m, 2H), 5.39 (dd, *J*=110.9, 7.3 Hz, 1H), 5.48–5.57 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 14.9, 17.1, 17.2, 22.5, 24.9, 26.6, 28.5, 114.4, 119.6, 129.2, 129.6, 137.7 ppm; HRMS (ESI): *m/z*: calcd for C₁₂H₁₇NaN: 198.1259 [*M*+Na]⁺; found: 198.1226.

(1*R*,2*S*)-*cis*-1-Ethenyl-2-[(*Z*)-6-oxohex-1-enyl]cyclopropane (26): Diisobutylaluminum hydride (1.2 m in toluene, 6.6 mL, 7.9 mmol) was added to a solution of nitrile 25 (0.7 g, 4.0 mmol) in CH₂Cl₂ (41 mL) at -78 °C. After stirring at -78 °C for 30 min, HCl (1 n, 8 mL) was added and the mixture was slowly warmed to room temperature and partitioned between CH₂Cl₂ (30 mL) and H₂O (10 mL). The organic layer was washed with water (2×10 mL), dried (MgSO₄), and concentrated. The residue was purified chromatographically (SiO₂; hexane/EtOAc, 95:5) to afford 26 as a colorless oil (0.5 g, 70%). ¹H NMR (400 MHz, CDCl₃): δ =0.56 (q, *J*=5.6 Hz, 1H), 1.15 (td, *J*=8.3, 5.6 Hz, 1H), 1.37-1.46 (m, 2H), 1.60-1.83 (m, 4H), 2.16 (q, *J*=7.3, 2H), 2.43 (t, *J*=7.3, 2H), 4.98 (d, *J*= 8.8 Hz, 1H), 5.04-5.12 (m, 2H), 5.40 (dt, *J*=10.9, 7.3 Hz, 1H), 5.48-5.57 (m, 1H), 9.74 ppm (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =14.9, 17.3, 21.7, 22.5, 27.3, 29.1, 43.8, 114.3, 129.0, 129.9, 137.8, 20.2.5 ppm; HRMS (ESI): *m/z*: calcd for C₁₂H₁₈NaO: 201.1256 [*M*+Na]⁺; found: 201.1234.

(15,2 *R*)-*cis*-1-[(*Z*)-7-Aminohept-1-enyl]-2-ethenylcyclopropane (27): LiAlH₄ (0.9 g, 23.7 mmol) was added in small portions to a solution of nitrile **25** (0.9 g, 5.1 mmol) in THF (100 mL) at 0 °C. The mixture was stirred at 0 °C for 5 h and then THF (50 mL), water (2 mL), and MgSO₄ (5 g) were sequentially added. The suspension was filtered and the filtrate was concentrated to afford **27** as a yellow oil (0.6 g, 65%), which was used directly in the next reaction without further purification. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.55$ (q, J = 5.5 Hz, 1H), 1.14 (td, J = 8.2, 5.5 Hz, 1H), 1.29–1.47 (m, 6H), 1.69–1.72 (m, 1H), 1.77–1.83 (m, 1H), 2.13 (q, J = 6.7 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 4.98 (d, J = 9.2 Hz, 1H), 5.02–5.12 (m, 2H), 5.42 (dt, J = 10.4, 6.7 Hz, 1H), 5.49–5.58 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 17.3, 22.4, 26.5, 27.6, 29.5, 33.8, 42.2, 114.1, 128.4, 130.6, 137.9 ppm; HRMS (ESI): *m*/*z*: calcd for C₁₂H₂₂N: 180.1752 [*M*+H]⁺; found: 180.1719.

Bis[(*Z*)-7-((1*S*,*2R*)-2-ethenylcyclopropyl)hept-6-enyl]-ammonium hexafluorophosphate (20-H-PF₆): Aldehyde 26 (0.5 g, 2.8 mmol), amine 27 (0.6 g, 3.3 mmol), K_2CO_3 (210 mg, 1.5 mmol), and 4 Å molecular sieves (1 g) in CH₂Cl₂ (14.5 mL) were mixed at 0°C and then stirred at room temperature for 16 h. The mixture was then filtered and the filtrate was concentrated. The residue was dissolved in MeOH (13 mL) at 0°C and NaBH₄ (200 mg, 5.3 mmol) was added. The mixture was stirred at 0°C for 4 h and was then partitioned between CH₂Cl₂ (30 mL) and water (10 mL). The organic layer was washed with water (2×10 mL), dried (MgSO₄), and concentrated. HCl (1 N, 2.9 mL) and an aqueous solution of saturated NH₄PF₆ (10 mL) were sequentially added to a solution of the crude amine (0.5 g, 1.4 mmol) in CH₃CN (10 mL). The organic solvent was evaporated under reduced pressure and the aqueous phase was then washed with CH₂Cl₂ (2×30 mL). The combined organic phases were dried (MgSO₄), concentrated, and purified chromatographically (SiO₂;

FULL PAPER

CH₂Cl₂/MeOH, 95:5) to afford **20-**H**·**PF₆ as a colorless oil (0.6 g, 44%). ¹H NMR (400 MHz, CD₃CN): δ =0.57 (q, *J*=5.5 Hz, 2H), 1.15 (td, *J*= 8.3, 5.5 Hz, 2H), 1.32–1.44 (m, 8H), 1.59–1.66 (m, 4H), 1.69–1.77 (m, 2H), 1.82–1.92 (m, 2H), 2.14–2.21 (m, 4H), 2.93 (t, *J*=7.8 Hz, 4H), 4.96 (d, *J*=10.2 Hz, 2H), 5.06–5.13 (m, 4H), 5.38–5.45 (m, 2H), 5.51– 5.64 ppm (m, 2H); ¹³C NMR (100 MHz, CD₃CN): δ =15.3, 18.0, 23.2, 26.3, 26.4, 27.6, 29.5, 48.8, 113.9, 129.3, 130.4, 138.5 ppm; HRMS (ESI): *m*/*z*: calcd for C₂₄H₄₀N: 342.3161 [**20-**H]⁺; found: 342.3131.

[2]Rotaxane 28-H-PF₆: A solution of **20**-H-PF₆ (50 mg, 0.1 mmol) and DB24C8 (91.8 mg, 0.2 mmol) in CHCl₃ (1.4 mL) was stirred at 45 °C for 70 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (SiO₂; CH₂Cl₂/CH₃CN, 98:2) to give **28**-H-PF₆ as a white solid (65 mg, 68%). M.p. 113–115 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.06–1.20 (m, 12 H), 1.39–1.48 (m, 4H), 1.92–2.16 (m, 4H), 2.22–2.34 (m, 2H), 2.62–2.72 (m, 2H), 2.82–2.96 (m, 2H), 3.18–3.26 (m, 4H), 3.74 (s, 8H), 3.84–3.92 (m, 8H), 4.14–4.20 (m, 8H), 5.40–5.47 (m, 2H), 5.57–5.67 (m, 6H), 6.66–6.81 (br, 2H), 6.81–6.96 ppm (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ = 26.6, 26.7, 26.8, 28.4, 32.8, 35.9, 37.0, 48.6, 68.1, 70.5, 71.0, 112.6, 121.7, 127.3, 128.0, 129.5, 136.1, 147.2 ppm; HRMS (ESI): *m/z*: calcd for C₄₈H₇₂NO₈: 790.5258 [**28**-H]⁺; found: 790.5226.

[2]Rotaxane 29-H-PF₆: PtO₂ (2 mg, 8 µmol) was added to a solution of 28-H-PF₆ (62 mg, 66 µmol) in THF (2 mL) and the mixture was stirred under a H₂ atmosphere for 30 min. After filtration, the solvent was evaporated under reduced pressure and the residue purified chromatographically (SiO₂; CH₂Cl₂/MeOH, 98:2) to afford 29-H-PF₆ as a white solid (49 mg, 79%). M.p. 148–150 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.94-1.64$ (m, 42 H), 3.19–3.28 (m, 4 H), 3.74 (s, 8 H), 3.88–3.94 (m, 8 H), 4.15–4.21 (m, 8H), 6.63–6.81 (br, 2 H), 6.81–6.95 ppm (m, 8 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.6$, 26.7, 26.8, 26.9, 28.6, 34.6, 37.8, 39.1, 48.6, 68.0, 70.4, 71.0, 112.5, 121.6, 147.2 ppm; HRMS (ESI): *m/z*: calcd for C₄₈H₈₀NO₈: 798.5884 [29-H]⁺; found: 798.5897.

[2]Rotaxane 30-H-PF₆: A solution of **20**-H-PF₆ (50 mg, 0.1 mmol) and the macrocycle **12** (93 mg, 0.2 mmol) in CH₃NO₂ (1.4 mL) was stirred at 45 °C for 62 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (SiO₂; CH₂CL₃/CH₃CN, 98:2) to afford **30**-H-PF₆ as a white solid (50 mg, 52%). M.p. 106–108 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.49–0.60 (m, 4H), 0.77–0.88 (m, 8H), 1.06–1.18 (m, 4H), 1.18–1.37 (m, 4H), 2.02–2.25 (m, 4H), 2.40–2.51 (m, 2H), 2.67–2.79 (m, 2H), 2.95–3.02 (m, 2H), 4.51 (s, 4H), 4.72 (s, 4H), 5.22 (s, 4H), 5.55–5.78 (m, 8H), 6.49–6.62 (br, 2H), 6.95 (d, *J*=8.4 Hz, 4H), 7.23 (d, *J*=7.8 Hz, 2H), 7.32 (s, 4H), 7.72 pm (t, *J*=7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =25.9, 26.3, 26.8, 28.5, 32.9, 36.0, 37.1, 47.4, 67.8, 74.1, 74.2, 116.2, 122.4, 127.7, 127.8, 128.0, 128.3, 129.5, 130.9, 136.0, 136.4, 138.2, 155.4, 157.6 ppm; HRMS (ESI): *m/z*: calcd for C₃₃H₆₇N₂O₄: 795.5101 [**30**-H]⁺; found: 795.5127.

[2]Rotaxane 31-H-PF₆: PtO₂ (1 mg, 4 µmol) was added to a solution of **30**-H-PF₆ (15 mg, 16 µmol) in THF (2 mL) and the mixture was stirred under a H₂ atmosphere for 30 min. After filtration, the solvent was evaporated under reduced pressure and the residue purified chromatographically (SiO₂; CH₂Cl₂/MeOH, 98:2) to afford **31**-H-PF₆ as a white solid (12 mg, 79%). M.p. 67–69°C; ¹H NMR (400 MHz, CDCl₃): δ = 0.43–0.54 (m, 4H), 0.77–0.84 (m, 8H), 1.09–1.24 (m, 12H), 1.36–1.67 (m, 22H), 4.50 (s, 4H), 4.72 (s, 4H), 5.22 (s, 4H), 6.56 (br, 2H), 6.94 (d, *J* = 8.4 Hz, 4H), 7.15 (d, *J*=8.4 Hz, 4H), 7.24 (d, *J*=8.0 Hz, 2H), 7.32 (s, 4H), 7.71 ppm (t, *J*=7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =26.0, 26.5, 26.7, 27.1, 28.6, 34.7, 38.1, 39.3, 47.5, 67.9, 74.2, 74.3, 116.2, 122.4, 127.8, 128.3, 130.9, 136.5, 138.2, 155.4, 157.6 ppm; HRMS (ESI): *m/z*: calcd for C₅₃H₇₅N₂O₄: 803.5727 **[31**-H]⁺; found: 803.5711.

[2]Rotaxane 32-H-PF₆: A solution of 20-H-PF₆ (50 mg, 0.1 mmol) and macrocycle 13 (86 mg, 0.2 mmol) in CH₃NO₂ (1.4 mL) was stirred at 45 °C for 84 h. After evaporating the solvent under reduced pressure, the residue was purified chromatographically (SiO₂; CH₂Cl₂/CH₃CN, 98:2) to afford 32-H-PF₆ as a white solid (54 mg, 58%). M.p. 73–75 °C; ¹H NMR (400 MHz, CD₃NO₂): δ =0.51–0.64 (m, 4H), 0.96–1.03 (m, 4H), 1.10–1.48 (m, 12H), 2.15–2.33 (m, 4H), 2.43–2.58 (m, 2H), 2.68–2.79 (m, 2H), 2.96–3.03 (m, 2H), 3.58–3.62 (m, 4H), 3.75–3.82 (m, 4H), 4.39 (s, 4H), 5.28 (s, 4H), 5.60–5.78 (m, 8H), 6.40–6.60 (br, 2H), 7.05 (d, *J*=8.0 Hz,

4H), 7.26 (d, J=8.0 Hz, 4H), 7.37 ppm (s, 4H); ¹³C NMR (100 MHz, CD₃NO₂): δ =27.6, 28.1, 29.6, 34.3, 37.4, 38.6, 48.9, 69.1, 71.6, 71.7, 75.0, 117.9, 129.1, 129.2, 129.6, 130.9, 131.2, 132.3, 137.9, 138.5, 159.2 ppm (one signal is missing, possibly because of signal overlap); HRMS (ESI): *m/z*: calcd for C₅₀H₆₈NO₅: 762.5097 [**32**-H]⁺; found: 762.5055.

[2]Rotaxane 33-H-PF₆: PtO₂ (2 mg, 8 µmol) was added to a solution of 32-H-PF₆ (54 mg, 59 µmol) in THF (2 mL) and the mixture was stirred under a H₂ atmosphere for 30 min. After filtration, the solvent was evaporated under reduced pressure and the residue was purified chromatographically (SiO₂; CH₂Cl₂/MeOH, 98:2) to afford 33-H-PF₆ as a white solid (48 mg, 88%). M.p. 152–154°C; ¹H NMR (400 MHz, CDCl₃): δ = 0.43–0.57 (m, 4H), 0.82–0.91 (m, 4H), 0.92–1.04 (m, 4H), 1.16–1.26 (m, 12H), 1.38–1.80 (m, 22 H), 3.55–3.60 (m, 4H), 3.68–3.77 (m, 4H), 4.32 (s, 4H), 5.23 (s, 4H), 6.20–6.30 (br, 2H), 6.93 (d, *J* = 8.4 Hz, 4H), 7.12 (d, *J* = 8.4 Hz, 4H), 7.31 ppm (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 26.4, 26.6, 27.1, 28.5, 34.7, 38.1, 39.2, 47.2, 67.8, 70.1, 73.9, 116.1, 127.6, 128.5, 130.5, 136.4, 157.4 ppm (one signal is missing, possibly because of signal overlap); HRMS (ESI): *m*/*z*: calcd for C₅₀H₇₆NO₅: 770.5723 [33-H]⁺; found: 770.5712.

Acknowledgements

We thank the National Science Council (Taiwan) for financial support (NSC-98-2113M-002-004-MY3).

- a) J.-P. Collin, C. Dietrich-Buchecker, P. Gavina, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487; b) G. Kaiser, T. Jarrosson, S. Otto, Y.-F. Ng, A. D. Bond, J. K. M. Sanders, Angew. Chem. 2004, 116, 1993–1996; Angew. Chem. Int. Ed. 2004, 43, 1959–1962; c) T. Iijima, S. A. Vignon, H.-R. Tseng, T. Jarrosson, J. K. M. Sanders, F. Marchioni, M. Venturi, E. Apostoli, V. Balzani, J. F. Stoddart, Chem. Eur. J. 2004, 10, 6375–6392; d) J. D. Badjić, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science 2004, 303, 1845– 1849.
- [2] For reviews, see: a) A. Harada, Acc. Chem. Res. 2001, 34, 456-464;
 b) S. J. Loeb, Chem. Commun. 2005, 1511-1518;
 c) M. D. Lankshear, P. D. Beer, Acc. Chem. Res. 2007, 40, 657-668;
 d) Y. H. Ko, E. Kim, I. Hwang, K. Kim, Chem. Commun. 2007, 1305-1315;
 e) J. Berná, G. Bottari, D. A. Leigh, E. M. Pérez, Pure Appl. Chem. 2007, 79, 39-54;
 f) B. Champin, P. Mobian, J.-P. Sauvage, Chem. Soc. Rev. 2007, 36, 358-366;
 g) K. E. Griffiths, J. F. Stoddart, Pure Appl. Chem. 2008, 80, 485-506.
- [3] For recent examples, see: a) T.-C. Lin, C.-C. Lai, S.-H. Chiu, Org. Lett. 2009, 11, 613–616; b) C.-J. Chuang, W.-S. Li, C.-C. Lai, Y.-H. Liu, S.-M. Peng, I. Chao, S.-H. Chiu, Org. Lett. 2009, 11, 385–388; c) S. Li, M. Liu, J. Zhang, B. Zheng, X. Wen, N. Li, F. Huang, Eur. J. Org. Chem. 2008, 6128–6133; d) F. Durola, J. Lux, J.-P. Sauvage, Chem. Eur. J. 2009, 15, 4124–4134; e) J.-Y. Wang, J.-M. Han, J. Yan, Y. Ma, J. Pei, Chem. Eur. J. 2009, 15, 3585–3594; f) A. Coskun, D. C. Friedman, H. Li, K. Patel, H. A. Khatib, J. F. Stoddart, J. Am. Chem. Soc. 2009, 131, 2493–2495; g) A. Brown, K. M. Mullen, J. Ryu, M. J. Chmielewski, S. M. Santos, V. Felix, A. L. Thompson, J. E. Warren, S. I. Pascu, P. D. Beer, J. Am. Chem. Soc. 2009, 131, 4937–4952.
- [4] For examples, see: a) F. M. Raymo, K. N. Houk, J. F. Stoddart, J. Am. Chem. Soc. 1998, 120, 9318–9322; b) P. E. Mason, W. S. Bryant, H. W. Gibson, Macromolecules 1999, 32, 1559–1569; c) A. M. Elizarov, T. Chang, S.-H. Chiu, J. F. Stoddart, Org. Lett. 2002, 4, 3565–3568; d) S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. K. M. Sanders, J. F. Stoddart, J. Am. Chem. Soc. 2004, 126, 9884–9885; e) S.-Y. Hsueh, C.-C. Lai, Y.-H. Liu, Y. Wang, S.-M. Peng, S.-H. Chiu, Org. Lett. 2007, 9, 4523–4526; f) M. A. Bolla, J. Tiburcio, S. J. Loeb, Tetrahedron 2008, 64, 8423–8427.
- [5] For examples, see: a) P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J. Williams, *Angew. Chem.* **2001**, *113*, 1922–1927; *Angew. Chem. Int. Ed.* **2001**, *40*, 1870–1875; b) A. F. M. Kilbinger, S. J. Can-

trill, A. W. Waltman, M. W. Day, R. H. Grubbs, *Angew. Chem.* 2003, *115*, 3403–3407; *Angew. Chem. Int. Ed.* 2003, *42*, 3281–3285; c) O. Lukin, T. Kubota, Y. Okamoto, F. Schelhase, A. Yoneva, W. M. Muller, U. Muller, F. Vögtle, *Angew. Chem.* 2003, *115*, 4681–4684; *Angew. Chem. Int. Ed.* 2003, *42*, 4542–4545; d) W. R. Dichtel, O. S. Miljanic, W. Zhang, J. M. Spruell, K. Patel, I. Aprahamian, J. R. Heath, J. F. Stoddart, *Acc. Chem. Res.* 2008, *41*, 1750–1761; e) D. A. Leigh, P. J. Lusby, R. T. McBurney, A. Morelli, A. M. Z. Slawin, A. R. Thomson, D. B. Walker, *J. Am. Chem. Soc.* 2009, *131*, 3762–3771.

- [6] I. Yoon, M. Naita, T. Shimizu, M. Asakawa, J. Am. Chem. Soc. 2004, 126, 16740–16741.
- [7] C.-W. Chiu, C.-C. Lai, S.-H. Chiu, J. Am. Chem. Soc. 2007, 129, 3500–3501.
- [8] a) S. J. Rowan, S. J. Cantrill, J. F. Stoddart, Org. Lett. 1999, 1, 129–132; b) W.-C. Hung, K.-S. Liao, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Org. Lett. 2004, 6, 4183–4186.
- [9] B. M. Trost, Science 1991, 254, 1471-1477.
- [10] a) C. Ullenius, P. W. Ford, J. E. Baldwin, J. Am. Chem. Soc. 1972, 94, 5910–5911; b) J. E. Baldwin, C. Ullenius, J. Am. Chem. Soc. 1974, 96, 1542–1547.
- [11] a) M. P. Schneider, A. Rau, J. Am. Chem. Soc. 1979, 101, 4426–4427; b) S. Pantke-Böcker, G. Pohnert, I. Fischer-Lui, W. Boland, A. F. Peters, *Tetrahedron* 1995, 51, 7927–7936; c) G. Pohnert, W. Boland, *Tetrahedron* 1997, 53, 13681–13694.
- [12] W. T. Ashton, L. C. Meurer, C. L. Cantone, A. K. Field, J. Hannah, J. D. Karkas, R. Liou, G. F. Patel, H. C. Perry, A. F. Wagner, E. Walton, R. L. Tolman, J. Med. Chem. 1988, 31, 2304–2315.
- [13] S.-H. Ueng, S.-Y. Hsueh, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Chem. Commun. 2008, 817–819.
- [14] a) P.-N. Cheng, W.-C. Hung, S.-H. Chiu, *Tetrahedron Lett.* 2005, 46, 4239–4242; b) P.-N. Cheng, P.-Y. Huang, W.-S. Li, S.-H. Ueng, W.-C. Hung, Y.-H. Liu, C.-C. Lai, S.-M. Peng, I. Chao, S.-H. Chiu, *J. Org. Chem.* 2006, 71, 2373–2383; c) K.-W. Cheng, C.-C. Lai, P.-T. Chiang, S.-H. Chiu, *Chem. Commun.* 2006, 2854–2856.

- [15] For a discussion of the self-assembly of DB24C8 and DBA⁺, see: M. C. T. Fyfe, J. F. Stoddart, *Adv. Supramol. Chem.* **1999**, *5*, 1–53.
- [16] Crystal data for **14**-H-PF₆: $[C_{50}H_{59}O_4N_2][PF_6]$; M_r =896.96; monoclinic; space group *C2/c*; *a*=35.8810(15), *b*=23.1966(13), *c*=12.4934(4) Å; *V*=9966.3 (8) Å³; ρ_{calcd} =1.196 gcm⁻³; $\mu(Cu_{K\alpha})$ =1.041 mm⁻¹; *T*=100(2) K.; colorless columns; 5345 independent measured reflections; *F*² refinement; *R*₁=0.1500; *wR*₂=0.3903.
- [17] CCDC-760743 (14-H-PF₆) and 760744 (29-H-PF₆) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [18] By using the single-point method, we determined the binding constants for the interactions of the threadlike salt 1-H-PF₆ with the macrocycles 12, 13, and DB24C8 in CD₃CN to be 80, 260, and $310 \,\text{m}^{-1}$, respectively. In CD₃NO₂, these values were 2000, 15000, and $3400 \,\text{m}^{-1}$, respectively; see: references [13] and [14].
- [19] a) S.-H. Chiu, S.-J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P. White, D. J. Williams, *Chem. Eur. J.* **2002**, *8*, 5170–5183; b) Y. Tachibana, N. Kihara, Y. Furusho, T. Takata, *Org. Lett.* **2004**, *6*, 4507–4509.
- [20] A similar method has been used to generate pseudorotaxanes as solids for the efficient syntheses of [4]rotaxanes and the smallest [2]rotaxane prepared to date; see: a) C.-C. Hsu, N.-C. Chen, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Angew. Chem. 2008, 120, 7585–7588; Angew. Chem. Int. Ed. 2008, 47, 7475–7478; b) S.-Y. Hsueh, K.-W. Cheng, C.-C. Lai, S.-H. Chiu, Angew. Chem. 2008, 120, 4508–4511; Angew. Chem. Int. Ed. 2008, 47, 4436–4439.
- [21] D. Grandjean, P. Pale, J. Chuche, *Tetrahedron* **1991**, 47, 1215–1230.
- [22] Crystal data for **29**-H-PF₆: $[C_{48}H_{80}O_8N]$ [PF₆]; M_r =944.10; monoclinic; space group C2/c; a=21.7841(11), b=13.0799(6), c=17.6482(7) Å; V=5024.3(4) Å³; $\rho_{calcd}=1.248$ gcm⁻³; $\mu(Cu_{K\alpha})=$ 1.102 mm⁻¹; T=100(2) K.; colorless columns; 3888 independent measured reflections; F^2 refinement; $R_1=0.1425$; $wR_2=0.4319$.

Received: January 12, 2010 Published online: May 6, 2010